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 REST is a software structure mainly used 
to produce machine readable contents 
using the natural way the Internet works
 HTTP protocol 
 Hypermedia formats

 HTTP commands POST, GET, PUT and 
DELETE are used to create, delete or 
update resources (Similar to CRUD in 
database systems)
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 Main REST concepts
 Addressibility – resources uniquely identified by URI
 Statelessness – resource is the same, regardless of 

the chain of navigation to get to it
 Connectedness – every resource should be linked 

to by another resource
 Uniform interface – same set of methods to operate 

on all resources
 Data is represented as resources
 Resources are addressed with a URI
 Many MIME types such as XML, JSON and YAML 

are supported
 http://www.bla.com/users/johnsmith
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 Resources can be expressed using 
hyperlinks (URI: Unique resource Identifiers)

 No need to keep track of sessions
 Reduced server workload and response 

time due to caching
 Allows users to bookmark resources (the 

query to access the resources) 
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 Store and load data from an RDBMS into 
an Object Oriented Data Model
 Object Oriented Database

 Application programmer no longer 
needs to solve the Object-Relational 
Impedance Mismatch
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#Save to Database
Session = sessionmaker() 
session = Session() 

newgroup = Group() 
newgroup.group_name = 'Reactor Workers'
session.save(newgroup) 

#Load from Database
query = session.query(Group).filter(Group.group_name=='Reactor 

Workers') 
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Isn't that nicer than writing SQL?

#Save to Database
Session = sessionmaker() 
session = Session() 

newgroup = Group() 
newgroup.group_name = 'Reactor Workers'
session.save(newgroup) 

#Load from Database
query = session.query(Group).filter(Group.group_name=='Reactor 

Workers') 
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 Mappings between Classes and Tables 
are defined by the  
application/database programmer
 XML
 Programmatically

 In general
 Classes -> Tables
 Properties -> Fields
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class User
{

private String name;
private String phone;

}

class Group
{

private String name;
private List<User> members;

}

CREATE TABLE User (“Name” char(256) 
PRIMARY KEY, “Phone” char(20));

CREATE TABLE Group (“Name” 
char(256) PRIMARY KEY);

CREATE TABLE User_Group (“userid”, 
char(256) PRIMARY KEY references 
User(Name), “groupid” char(256) 
PRIMARY KEY references 
Group(Name));

Code SQL
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#define a table to hold Group instances
group_table = Table('groups', metadata,

Column('id', Integer, primary_key=True),
Column('group_name', String(16), unique=True, nullable=False),
Column('created', DateTime, default=datetime.now) 

) 

#create the table
metadata.create_all() 

#bind the two together
mapper(Group,group_table) 



 Map classes of objects into addressable, 
flattened space

 Have two separate parts, mapper and 
retrieval
› Hide complexity of getting data

 Used in same environment
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 Ideal Goal
 Automatically define REST API and 

relational database tables from data 
models, creating 'persistent web 
objects' in a single click/operation

 Client layer which exposes web API as 
a set of shared objects – the same set 
that make up the data model on the 
server
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 A more realistic goal:

 Define REST APIs in the same way as 
ORM tables, with as little effort as 
possible, leveraging 
similarities/redundancies wherever 
they exist
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 Create prototypes using various existing 
frameworks
 ORM
 SQLAlchemy
 Hibernate
 Django

 REST
 POPO
 CherryPy
 Django
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 Choose elements from competing 
Python REST frameworks, and attempt to 
integrate them into the Django Web 
Platform

 Continue investigation into useful 
features in this field
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