

2

DB

Database Interface

Model

Web Interface

3

DB

ORM

Model

RESTful Web Service

4

DB

ORM

Model

RESTful Web Service

 REST is a software structure mainly used
to produce machine readable contents
using the natural way the Internet works
 HTTP protocol
 Hypermedia formats

 HTTP commands POST, GET, PUT and
DELETE are used to create, delete or
update resources (Similar to CRUD in
database systems)

5

 Main REST concepts
 Addressibility – resources uniquely identified by URI
 Statelessness – resource is the same, regardless of

the chain of navigation to get to it
 Connectedness – every resource should be linked

to by another resource
 Uniform interface – same set of methods to operate

on all resources
 Data is represented as resources
 Resources are addressed with a URI
 Many MIME types such as XML, JSON and YAML

are supported
 http://www.bla.com/users/johnsmith

6

 Resources can be expressed using
hyperlinks (URI: Unique resource Identifiers)

 No need to keep track of sessions
 Reduced server workload and response

time due to caching
 Allows users to bookmark resources (the

query to access the resources)

7

8

DB

ORM

Model

RESTful Web Service

9

DB

ORM

Model

RESTful Web Service

10

 Store and load data from an RDBMS into
an Object Oriented Data Model
 Object Oriented Database

 Application programmer no longer
needs to solve the Object-Relational
Impedance Mismatch

11

#Save to Database
Session = sessionmaker()
session = Session()

newgroup = Group()
newgroup.group_name = 'Reactor Workers'
session.save(newgroup)

#Load from Database
query = session.query(Group).filter(Group.group_name=='Reactor

Workers')

12

Isn't that nicer than writing SQL?

#Save to Database
Session = sessionmaker()
session = Session()

newgroup = Group()
newgroup.group_name = 'Reactor Workers'
session.save(newgroup)

#Load from Database
query = session.query(Group).filter(Group.group_name=='Reactor

Workers')

13

 Mappings between Classes and Tables
are defined by the
application/database programmer
 XML
 Programmatically

 In general
 Classes -> Tables
 Properties -> Fields

14

class User
{

private String name;
private String phone;

}

class Group
{

private String name;
private List<User> members;

}

CREATE TABLE User (“Name” char(256)
PRIMARY KEY, “Phone” char(20));

CREATE TABLE Group (“Name”
char(256) PRIMARY KEY);

CREATE TABLE User_Group (“userid”,
char(256) PRIMARY KEY references
User(Name), “groupid” char(256)
PRIMARY KEY references
Group(Name));

Code SQL

15

#define a table to hold Group instances
group_table = Table('groups', metadata,

Column('id', Integer, primary_key=True),
Column('group_name', String(16), unique=True, nullable=False),
Column('created', DateTime, default=datetime.now)

)

#create the table
metadata.create_all()

#bind the two together
mapper(Group,group_table)

 Map classes of objects into addressable,
flattened space

 Have two separate parts, mapper and
retrieval
› Hide complexity of getting data

 Used in same environment

16

17

 Ideal Goal
 Automatically define REST API and

relational database tables from data
models, creating 'persistent web
objects' in a single click/operation

 Client layer which exposes web API as
a set of shared objects – the same set
that make up the data model on the
server

18

 A more realistic goal:

 Define REST APIs in the same way as
ORM tables, with as little effort as
possible, leveraging
similarities/redundancies wherever
they exist

19

 Create prototypes using various existing
frameworks
 ORM
 SQLAlchemy
 Hibernate
 Django

 REST
 POPO
 CherryPy
 Django

20

 Choose elements from competing
Python REST frameworks, and attempt to
integrate them into the Django Web
Platform

 Continue investigation into useful
features in this field

21

	Slide Number 1
	Slide Number 2
	Architecture of a Service
	Architecture of a Service
	REST: Representational State Transfer
	REST: Representational State Transfer
	REST advantages over RPC web services
	Architecture of a Service
	Architecture of a Service
	Object Relational Mapping
	Object Relational Mapping
	Object Relational Mapping
	Object Relational Mapping
	Object Relational Mapping
	Object Relational Mapping
	Similarities between REST and ORM
	Goals
	Goals
	What have we done?
	What is next?
	Questions?

