
REST ORM
Rory Tulk - Mohammad Jalali

University of Toronto

REST (Representational State Transfer)
REST is a software structure mainly used to produce machine
readable contents using the natural way the Internet works

 HTTP protocol
 Hypermedia formats

Concepts:
 Addressability – resources uniquely identified by URI
 Statelessness – resource is the same, regardless of the chain

of navigation to get to it
 Connectedness – every resource should be linked to by

another resource
 Uniform interface – same set of methods to operate on all

resources
Data is represented as resources
Resources are addressed with a URI
Many MIME types such as XML, JSON and YAML are
supported
http://www.bla.com/users/johnsmith

Successfully implemented selection of RESTful feature improvements
in Django.

Created a proof-of-concept demonstration web service, based on the
Django example in RESTful Web Services. This results in a
remarkably similar service, albeit with improved XML resource
representation, query string searching, etc, with much less effort
required to produce.

Could not implement client library due to time and resource
constraints.

Prestudy
Investigated different technologies and tools for ORMs such as Hibernate, Django ORM and
SQLAlchemy and their main features

Django
Django is a web applications platform, written entirely in Python, which enables easy
creation of data-driven web applications, thanks to its intuitive programming model and
strong ORM integration

Existing methods for creating REST web services with Django left several features to be
desired, and none were integrated with the Object Relation Mapping interface. Using an
existing REST solution (Django Rest API – URL), we implemented several features to
improve the RESTfulness of the Django applications:

Client Friendly Serialization
Created new serializers and plugged them into the Django's Serialization Framework to
better reflect the needs of RESTful Web Service client applications.

URL Links for Object Relationships
Implemented a mechanism for determining the URL of a REST resource from it's model
name and primary key. Using this, serialized representations of Django REST resources
contain proper hyperlinks to their related items, not simply primary key values.

Automatic Query String Attribute Searching
In addition to retrieving resources using URLs based on their primary key identifier, we
have created a mechanism which allows clients to retrieve representations based on any
fields in the model.

Delayed-GET Caching
Ability to enable Delayed-GET patterns (based on HTTP IF_MODIFIED_SINCE header)
for all resources seamlessly without additional effort on the part of the application
programmer.

Copeland, R. (2008). Essential SQLAlchemy. OREILLY.
Django Project Website. Retrieved 2009, from http://www.djangoproject.com/
Django Rest Interface. Retrieved 2009, from Google: http://code.google.com/p/django-rest-

interface/
Ruby, S., & Richardson, L. (2007). RESTful Web Services. OREILLY.
Tulk, R., & Jalali, M. (n.d.). Object Relational Mapping Investigation: Hibernate and

SQLAlchemy. Retrieved from Google:
http://docs.google.com/Doc?id=dg5wjm4b_1d8cxfbf5&hl=en

Red Hat Middleware, LLC. (2004). Hibernate Reference Documentation 3.1.1. url:
http://www.hibernate.org/hib_docs/reference/en/html/index.html

Larson, W. (2008 , 7 23). Replacing Django's ORM with SQLAlchemy. Retrieved 01 18,
2009, from lethain.com: http://lethain.com/entry/2008/jul/23/replacing-django-s-orm-with-
sqlalchemy/

Visual elements courtesy of dryicons (http://dryicons.com)

There is a great opportunity to alleviate redundancy and excessive
effort when creating data-driven web services. The tradeoff between
control and automation in tools to create these services seems to be the
major point of contention among the open source community.

The tool we developed leveraged implicit functionality and automation
where possible, resulting in drastically reduced effort when creating
REST services. This approach isn't for everyone, however.

Ideal Goals
Automatically define REST API and relational database tables
from data models, creating “persistent web objects” in a single
click/operation
Client layer which exposes web API as a set of shared objects –
the same set that make up the data model on the server

Realistic Goals
Define REST APIs in the same way as ORM tables, with as
little effort as possible, leveraging similarities/redundancies
wherever they exist

REST

Goals

Improving Django's REST Interface RESULTS

CONCLUSIONS

BIBLIOGRAPHYArchitecture of a Service

ORM

Model

RESTful Web Service

DB

ORM

ORM (Object Relational Mapping)
Store and load data from an RDBMS into an Object Oriented
Data Model
Application programmer no longer needs to solve the Object-
Relational Impedance Mismatch
Maps between Classes and Tables as defined by the
application and database programmer, either programmatically or
through the use of configuration files

	Slide Number 1

