
Skype Traffic Classification:
Naive Bayes or Neural Networks

Mohammad Jalali∗

Department of Computer Science
University of Toronto

Toronto, Ontario, Canada
mjalali@cs.toronto.edu

Abstract

Skype is one of the largest Voice over Internet Protocol (VoIP) providers with over
500 million users. Skype was created by the developers of KaZaa and unlike many
of its competition; it operates on a Peer-to-Peer (P2P) overlay network (It is not
using the IETF Session Initiation Protocol (SIP)). Becauseof its popularity, en-
crypted traffic and proprietary design, there has been a surge in the research com-
munity and the industry to understand its architecture and network traffic. In this
paper, I compare two different machine learning classification techniques, Naive
Bayes and Neural Networks, to see which one is more successful in identifying
Skype traffic from the other types of network traffic.

In order to assess these algorithms, I have designed and developed an application
which uses the Operating System’s network tools (netstat and tcpdump) to capture
and label each of the network flows and then extract statistical features of these
flows. These features are used to train and test the classifiers and the labels are
used as the ground truth in the evaluation.

1 Introduction

Traffic classification is an essential part of the network traffic management which allows time-
sensitive packets meet their performance goals (QoS: Quality of Service) and stops malicious traffic
from spreading. One of the most successful approaches to classify the network traffic is using Ma-
chine Learning techniques. Other techniques such as port checking and regular expression checking
are bound to fail when we have to deal with an application which communicates in an encrypted
manner and tries to hide from being detected by generating partially random pattern of traffic (For
example, Skype tries to avoid detection, because many service providers may benefit from compro-
mising its traffic).

A reliable Skype network traffic classifier can indicate the significance of this task when considering
network operators introducing network policies regardingSkype calls and monitoring Skype’s
performance. This classifier will allow the network provider to increase the priority of Skype calls
during routing and improve the call quality or block Skype due to local legislations (For example, it
is illegal to use Skype in United Arab Emirates).

∗Thanks to James Martens, Inmar Givoni and Richard Zemel for all their help and support during this
project.

1

2 Related Work

Network traffic detection is an emerging field. Different techniques have been developed for
identifying and classifying network traffic. These techniques usually fall into one of the following
groups:

The first group uses the port numbers on the packets to classify them. For example, the
packets that are generated by port 80 are classified to be of type HTTP. As stated by Curtis [8],
it has been shown that this technique is not effective at all for Skype and P2P applications that
dynamically choose their port number. Kim et al. [11] claim an accuracy of 4-13% for the
port-based classifier CoralReef [12].

The second group performs deep packet inspection for patterns which can distinguish a net-
work flow (Similar to matching a regular expression) [4]. These techniques are currently the most
common but as described by Moore et al. [9], they cannot be more accurate than 50-70% and when
the traffic is encrypted the accuracy plunges even more. One of the famous implementations of this
group is BLINC which captures the fundamental patterns of the transport layer and considers three
levels of host behavior (social, functional and application levels). The authors of BLINC [10] claim
an approximate accuracy of 80-95%. Another problem with this approach is that the pattern sig-
natures have to be developed by the network administrator and can be a tedious and error-prone task.

The third group use Machine Learning (ML) techniques to detect network traffic. There has
been a few research papers describing these techniques applied to different types of traffic and
these methods are proven to be the most effective for classifying network traffic. Kim et al. [11]
compare CoralReef, BLINC and seven ML algorithms and show that these techniques are the most
accurate and effective when it comes to classifying encrypted traffic (Accuracy up to 98%). But the
majority of these papers focus on the internet traffic as a whole rather than focusing on individual
software [11, 13, 14, 15]. A few actually just apply the WEKA library [17] using the default
parameters [11, 15, 16]. Trivially, their result can be improved if these parameters are fine-tuned for
a specific application. In [2], Bonfiglio et al. use Naive Bayes approach and Pearsons Chi-Square
test (packet inspection) together to reach an accuracy of close to 80% in detecting Skype traffic.
In addition, they describe various techniques to fine tune the parameters and features to improve
the performance. I have not been able to locate any papers applying other ML algorithms to Skype
traffic.

3 Classification Model

In this section, I describe the various components for classification. Firstly, I define what a network
flow is and how it contains enough information to be uniquely assigned to an application. In the next
subsection, I describe the main flow features I adopted in my project and why they are representative
of each network flow including Skype. Finally, I briefly describe the classification algorithms and
parameters used for their training.

3.1 Network Flows

In order to design a good network traffic classifier, we must first define its basics. As we know,
network traffic consists of data packets travelling betweena source and destination. Without loss
of generality, if we consider a simple client-server model,these packets can be generated by dif-
ferent applications but destined from the same client to thesame server. Therefore, we will need a
more robust model other than the packet’s IP (Internet Protocol) address to identify the application
generating them.

In this paper, we define a network flow to be a sequence of packets with the same 5-tupple (source
and destination IP addresses, source and destination port numbers and protocol number) which has
been active for the last 100 seconds (flows inactive for longer than 100 seconds are assumed to be
timed-out and completed).

2

Note that each flow is unique to each application because the Operating System only assigns each
port to a single application at each time and therefore, flowscan be used as a unique component
to be classified. Moreover, classifying flows would be equivalent to classifying the applications
generating the flow.

3.2 Feature Selection

Choosing good flow features is the most challenging and crucial part of designing a classifier. In [9],
Moore et al. use Flow duration, TCP Port, Packet inter-arrival time (mean, variance, . . .), Payload
size (mean, variance, . . .), Effective Bandwidth based uponentropy and Fourier Transform of the
packet inter-arrival time to classify internet traffic using Bayesian approach. Note that the main
focus of this paper is classifying TCP traffic and since most of the Skype flows use UDP protocol
and random ports then the TCP port and bandwidth becomes irrelevant. Bonfiglio et al. [2] use
message size (audio call packets sizes are different from other traffic) and average inter-arrival time
(to detect the fixed rate codec) to classify Skype traffic using Naive Bayes. Therefore, I have chosen
to use the following 17 features:

• Flow duration

• Client flow - packets inter-arrival time(mean, variance, max, min)

• Server flow - packets inter-arrival time(mean, variance, max, min)

• Client flow - packets size(mean, variance, max, min)

• Server flow - packets size(mean, variance, max, min)

The reason for these choices is that Skype traffic has longer flow duration compared to most of the
web traffic. Also, because of the use of codecs for audio callsand time sensitivity of packets in
Skype, these features can help distinguish Skype traffic.

3.3 Classification Algorithms

As mentioned before, for this experiment, I used Naive Bayesand Neural Networks to classify Skype
traffic. Naive Bayes [9, 11, 19] is the simplest probabilistic classifier based on Bayes theorem,
which analyzes the relationship between each feature and the application class for each instance
to derive a conditional probability for the relationships between the feature values and the class.
Neural Networks [11, 20, 21] is a highly interconnected network of units, neurons, whose output
is a combination of the multiple weighted inputs from other neurons. I used the most common and
simple Neural Network classifier called the Multilayer Perceptron model, which consists of a single
input layer of neurons (features), a single output layer of neurons (classes), and one hidden layer
between them. The number of hidden units was set to 4 and I set the learning rate (weight change
according to network error) to 0.003 and I ran the training for 3000 epochs (an epoch is the number
of times training data is shown to the network). Moreover, I utilized my own implementation of
these algorithms which I have developed for course assignments and the parameters were set by
manual fine-tuning. In addition, I have validated the results for Neural Networks with Matlab’s
Neural Network Toolbox [18].

In addition, I chose the 3-fold cross validation where 2/3 flows were left for training and 1/3 for
validation. Also, in the result section I have shown the effect of choosing various fractions (1%,
10%, 25%, 50%, 75% and 100%) of the training set on the performance metrics. Also, each of the
experiments was run 200 times and the results are the averageof the 200 executions. This was done
to remove the effect of leaving out important training data in random selections.

4 Experiment and Results

In this section, I present the experiment steps and results obtained by running the classification
algorithms on real data traffic.

3

Table 1: Uncertainty levels for Naive Bayes

Training Size True Positive False Positive True Negative False Negative
20 0.1995 0.0981 0.5159 0.1865
200 0.2401 0.0798 0.5343 0.1458
500 0.2501 0.0841 0.5299 0.1359
1000 0.2492 0.0868 0.5273 0.1367
1500 0.2485 0.0870 0.5271 0.1375
2000 0.2482 0.0872 0.5269 0.1377

4.1 Performance Metrics

I gathered the true positive, true negative, false positiveand false negative rates and I used accuracy
and precision metrics to measure the performance of Naive Bayes and Neural Networks.

• Accuracyof an algorithm is the ratio of sum of True Positives and True Negatives over the
sum of True Positives, False Positives, True Negatives and False Negatives or the proportion
of flows that are properly classified.

• Precisionof an algorithm is the ratio of True Positives over the sum of True Positives and
False Positives or the proportion of flows that are properly attributed to a given application
(Skype) by this algorithm.

4.2 Capture and Extraction of the Flows Features

In order to compare the classification algorithms, I used thetcpdump tool available with the Linux
Operating System to capture the raw packets. At the same time, I developed a script that probes
netstat to gather the list of applications and their corresponding open port numbers. I saved the raw
packets in the pcap format and the application name and port values in a format readable by Python
programming language (pickle).

At the next step, I used Python and the Scapy library in Pythonto parse the raw packets and create
a list of flows which satisfy the conditions mentioned in 3.1.Then, I used the netstat information to
label each of the flows in the flow list. Moreover, I extracted the features for each of the flows in the
list using the raw packet information and generated an output readable by Matlab.

Finally, I used the Matlab files to train my classifiers and gather the results.

4.3 Dataset

We have performed the learning on the following dataset:

• UBUNTU: refers to 24 hour long network trace collected on a Dell Optiplex 360 desktop
running Ubuntu Operating System on the University of Toronto’s Syslab network.

The UBUNTU dataset is representative of a typical data connection from a Linux machine to the
Internet, in which there is a combination of TCP and UDP flows carrying web, email, ssh, Skype
and file transfer services. Note that many common types of traffic such as P2P file sharing is missing
from this traffic due to strict network prohibitions and location of traffic capture. Also, the Skype
traffic includes Skype to Skype (E2E) audio call, text chatting and Skype to PSTN (SkypeOut) calls.
The size of the captured traffic is 350 MB and the total number of flows (with at least 4 packets) for
this trace is 3252 where 1241 of them are Skype flows. Without loss of generality, I have chosen the
first 3000 flows (with 1156 Skype flows) for our experiment because it would be easier to split it for
training and test.

4.4 Results

In this section we analyze the results from out experiment. The size of the test set for these experi-
ments is fixed and equals to 1000 while the training size changes.

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training Size

A
cc

ur
ac

y
R

at
e

Size of Training Data vs. Accuracy of the Classifiers

Naive Bayes Accuracy

Neural Networks Accuracy

Figure 1: Accuracy of Naive Bayes and Neural Networks.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

Training Size

P
re

ci
si

on
 R

at
e

Size of Training Data vs. Precision of the Classifiers

Naive Bayes Precision

Neural Networks Precision

Figure 2: Precision of Naive Bayes and Neural Networks.

From figure 1, we can see that Neural Networks (NN) has a large advantage over Naive Bayes
(NB) in both accuracy and precision except for when the training set is very small. This matches
our expectation and the results from the previous research.Also, we can see that the amount of
improvement for both of the algorithms is quite small when our training set becomes larger than
500 (50% of the size of the test set). This result can be very beneficial because the classifier can
save time by training on a much smaller training set for NN. Moreover, the accuracy of NB matches
the accuracy suggested by [2] (∼ 78%) and the accuracy of NN matches the accuracy suggested by

5

Table 2: Uncertainty levels for Neural Network

Training Size True Positive False Positive True Negative False Negative
20 0.1871 0.1267 0.4919 0.1942
200 0.3523 0.0570 0.5617 0.0290
500 0.3604 0.0469 0.5718 0.0209
1000 0.3681 0.0617 0.5571 0.0132
1500 0.3632 0.0482 0.5705 0.0181
2000 0.3602 0.0490 0.5697 0.0212

Table 3: Execution times for Naive Bayes and Neural Networksin seconds

Training Size Naive Bayes Neural Networks
20 0.0009 0.8403
200 0.0010 1.5021
500 0.0011 2.6161
1000 0.0011 4.5059
1500 0.0014 6.3676
2000 0.0019 8.1971

[11] (∼ 92%) which shows that by choosing appropriate features we can even accurately classify
encrypted network traffic at a close accuracy rate to the non-encrypted traffic.

In addition, from figure 2, we can see that for both of these algorithms, the changes in the precision
and accuracy are very similar. This shows that the features chosen works well for both Skype and
non-Skype traffic.

Moreover, from table 1 and 2, we can see that NB has a smaller false positive rate than NN when
the training set is small (size = 20) and this value reaches its minimum around training size 200
and as the size increases, the true negative value decreses while false positive increases. This can be
because of overfitting. A similar situation occurs for NN when the training size grows larger than
500.

Finally, from table 3, we can see that the execution time for NN increases substantially as the training
size grows (in the order of few seconds) while NB’s executiontime does not change significantly.
Also, we know that for a real-time online traffic classifier the classification time is very important
because most of the flows last less than a second and if the classifier responds after the flow termi-
nation then the classification will be useless. Therefore, Iwould recommend using NB approach in
this scenario, even though it has a significantly lower accuracy and precision.

5 Conclusion

I conducted a detailed comparison of Naive Bayes and Neural Networks approaches for Skype
traffic classification. My study confirmed the previous research and also yielded several insights:
(a) Neural Networks is significantly more accurate than Naive Bayes for classifying Skype
Traffic and it is definitely the algorithm of choice for offlinetraffic classification. (b) Both
of the approaches need a training set smaller than half of thetest set to reach very accurate
results. (c) Neural Networks takes a long time to execute andmay not be effective for online
traffic classification. Therefore, Naive Bayes would be morebeneficial in real-time traffic classifiers.

Scientifically grounded traffic classification research requires that researchers share tools and
algorithms, and baseline data sets from a wide range of Internet links to reproduce results. In
pursuit of this goal, I will make my code, dataset labeled with ground truth, and classifiers available
for researchers interested in validating or extending my work.

6

6 References

[1] Skype web site, http://www.skype.com

[2] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, Revealing skype traffic: when randomness
plays with you, ACM SIGCOMM Computer Communication Review,vol. 37, 2007, p. 48.

[3] A. Buonerba, Skype Traffic Detection and Characterization, HELSINKI UNIVERSITY OF TECHNOL-
OGY, 2007.

[4] D. Adami, C. Callegari, S. Giordano, M. Pagano, and T. Pepe, A Real-Time Algorithm for Skype Traf-
fic Detection and Classification, Proceedings of the 9th International Conference on Smart Spaces and Next
Generation Wired/Wireless Networking and Second Conference on Smart Spaces, 2009, p. 179.

[5] S.A. Baset and H. Schulzrinne, An analysis of the skype peer-to-peer internet telephony protocol, IEEE
infocom, 2006.

[6] S. Ehlert, S. Petgang, T. Magedanz, and D. Sisalem, Analysis and signature of Skype VoIP session traffic,
CIIT 2006: 4th IASTED International Conference on Communications, Internet, and Information Technology,
2006, pp. 8389.

[7] F.I. Khan, A Generic Technique for Voice over Internet Protocol (VoIP) Traffic Detection, IJCSNS, vol. 8,
2008, p. 52.

[8] J.P. Curtis, J.G. Cleary, A.J. McGregor, M.W. Pearson, Measurement of Voice Over IP Traffic, Proceedings
of PAM-2000: April 2000, Hamilton, New Zealand.

[9] A.W. Moore and D. Zuev, Internet traffic classification using bayesian analysis techniques, ACM SIGMET-
RICS Performance Evaluation Review, vol. 33, 2005, pp. 5060.

[10] [1] T. Karagiannis, K. Papagiannaki, and M. Faloutsos,BLINC: multilevel traffic classification in the dark,
Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer
communications, 2005, p. 240.

[11] H. Kim, K.C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K.Y. Lee, Internet traffic classification
demystified: Myths, caveats, and the best practices, Proceedings of the 2008 ACM CoNEXT conference, 2008.

[12] CoralReef. http://www.caida.org/tools/measurement/coralreef/.

[13] Z. Li, R. Yuan, and X. Guan, Accurate classification of the internet traffic based on the SVM method,
IEEE International Conference on Communications, 2007. ICC’07, 2007, pp. 13731378.

[14] Y. Zeng and T.M. Chen, Classification of Traffic Flows into QoS Classes by Unsupervised Learning and
KNN Clustering, KSII Transactions on Internet and Information Systems (TIIS), vol. 3, 2009, pp. 134146.

[15] D. Barman and M. Faloutsos, Comparison of Internet Traffic Classification Tools.

[16] J. Erman, M. Arlitt, and A. Mahanti. Traffic Classificaton Using Clustering Algorithms. In ACM SIG-
COMM MineNet Workshop, September 2006

[17] WEKA: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weka/.

[18] MATLAB - Neural Network Toolbox. http://www.mathworks.com/products/neuralnet/

[19] N. Williams, S. Zander, and G. Armitage. A preliminary performance comparison of five machine learning
algorithms for practical ip traffic flow classification. ACM SIGCOMM CCR, 36(5):715, October 2006.

[20] T. Auld, A. W. Moore, and S. F. Gull. Bayesian neural networks for internet traffic classification. IEEE
Transactions on Neural Networks, 18(1):223239, January 2007.

[21] N. Williams, S. Zander, and G. Armitage. Evaluating machine learning algorithms for automated network
application identification. Technical Report 060401B, CAIA, Swinburne Univ., April 2006.

7

